Comprehensive air power solutions

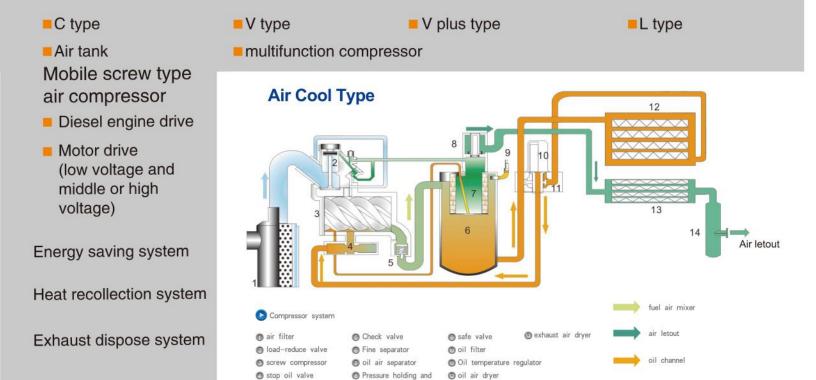
厦门固泰力动力科技有限公司 XIAMEN GTL POWER SYSTEM CO.,LTD

ABOUT GTL

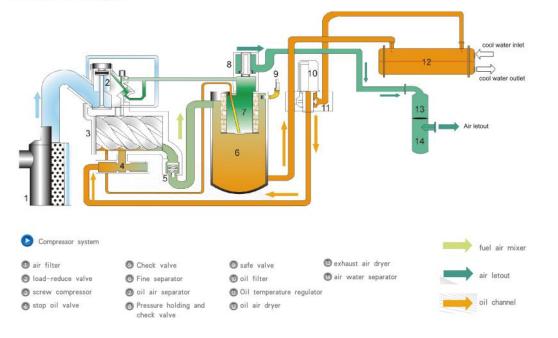
GTL Power System is committed to the R&D and manufacturing of Diesel Generator, Screw Air Compressor, Diesel Pump, Lighting Tower, Welding Generator and related control system and accessories. As a high-tech enterprise, we obtained National Industrial Production Permit in fabricating compressors.

Meanwhile, we are a comprehensive solution provider for our customers in different fields, bot power solution and air compressed solution. Combining our worldwide after-sales service, our product is widely used in different industries to cater to different customer demand.

compressor

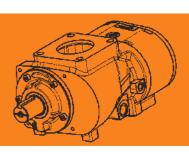


Stationary motor driven screw type air compressor (air cool, water cool)


Quality Management and Accreditations

The Solution of Air Compressor System

Flow Chart of System



Excellent overall performance

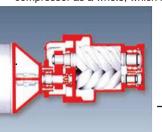
Strong compressor

1. The optimization designs of rotor molded lines increases the volumetric efficiency maximally and achieve low power consumption 2. The high quality moving parts material, high at the same time.

level machining and assembly precision and SKF overloaded bearings reduce impact and vibration to the machine maximally; and prolong the service life of the moving parts

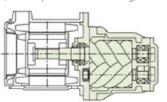
and further ensure the reliability of

High quality and efficient main motor


Adopt new technology efficient motor with 4top standard, F insulation, class B temperature rise, IP55 protection class improves the reliability of the motor and the compressor. The average service life of the oversize bearings designed specially for the compressor can reach the eight times of MEMA standard, at the same time, a grease filling

mouth installed in the bearing end cap is convenient for maintenance, and fully embody the humanized

Direct elastic coupling


The elastic coupling direct drive combines the motor and the compressor as a whole, which is simple and reliable, and the

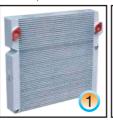
transmission efficiency is as high as 99.9%. It optimizes the unit performance effectively, and is convenient to fill oil, maintain and maintain on site.

V – PLUS One-piece structure

- 1. Adopt embedded integrated bearing direct structure, the structure is more compact, and the transmission efficiency is 100%
- High efficiency permanent magnet motor (PM motor)
 Compared with ordinary frequency modulation motor, PM motor is more superior in energy saving, and still can preserve high motor efficiency at low speed; %Adopting high performance Nd-Fe-B permanent magnets, the service life exceeds 15 years;
- *Adopting special corona-resistant enameled wire, insulation performance is outstanding, and
- *The rotor with a permanent magnet is installed directly on the extending shaft of male rotor, no need for bearings, eliminating the fault point of
- 3. The motor is small in size, a third of ordinary frequency modulation motor size, easy to disassemble and assemble.

Air cooling system

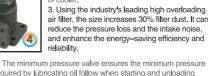
1. Adopt efficient tube cooler, large capacity, large heat exchange area and high cooling efficiency, which is suitable for high temperature environment


Water Cooling System

2. The water go through pipe, gas exhaust by the outside of the pipe. The direct connection design makes it convenient to clean the cooler and has a longer washing period.

1. It is 46 °C environment temperature and efficient cooling system design. The no weld connection of the large oil cooler and after cooler avoids thermal stress damage, greatly extend the service life; The heat transfer surplus is 30%, the cooling temperature difference is around 8 °C, and heat exchanges efficiency is outstanding; 2. Using multiple fan design vertical type cooler structure, make full use of cooler

cooling area, improve the efficiency of cooling. The separate hot and cold chamber make the heat dissipation effect is better, and ensures all components work in the cold chamber; prolong the service life of parts.


Air Circuit System

The minimum pressure valve ensures the minimum pressur quired by lubricating oil follow when starting and unloading rate, and prevents the backflow of compressed air.

1. The latest intake capacity control system

capacity adjustment (optional) and other

design integrates non-return valve, cut-off oil

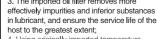
functions into a whole, the low pressure design

optimizes suction efficiency, and can adjust automatically according to the actual demand

change of the compressed air in the course of work, so it is high efficiency and energy saving.

2. The inlet air filter design blocks dust and

prolonging the cleaning time and service life


foreign body into the body effectively

Use secure leakproof sealing scheme, rational distribution of pipe fittings is considered fully in the process of design, using dual taper seal o-rings to eliminate oil leakage and leakage

Oil Circuit System

- 1. Tertiary oil and gas separation system (centrifugal/gravity/fine separation), micro design, built \vdash in efficient oil and gas separator core, ensure $\leq 2 \sim 3$ PPM oil content of compressed
- air, ensure the air is clean, at the same time, reduce effectively the oil consumption, and reduce the load of downstream air treatmen equipment.

- 4. Using originally imported temperature control valve, the performance is more stab and reliable 5. Efficient after cooler has advantages of
- small volume, high efficiency and long washing period, ensuring that the air supply temperature.
- 6 The multi-function gas water separator can eliminate 70% of the condensed water automatically; provide the quality of compressed air and has function of manua drainage, and is easy to maintain.

Optional efficient integrated overall design

Built-in freeze drying machine

The dexterous design and built-in freeze drying machine makes the air compressor to output dry compressed gas directly without any increase in area.

Built-in heat recovery unit

It is energy conservation and environmental protection, at same time, the one-piesce heat recovery unit saves the space resource.

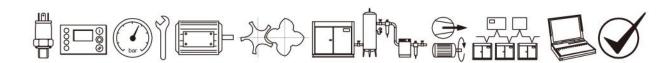
Intelligent Control System

EPMaster Intelligent Control System

A big LCD display can display text and graphics so that the compressor running status and a variety of settings are clear at a glance. Because a variety of settings can be achieved by simple operations on the operation panel, greatly improving the user's convenience, in case fails occurs, the fault content will display

on the screen, and can be removed and conveniently and quickly.

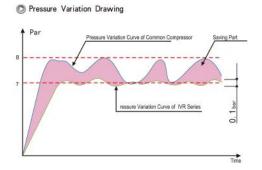
Standard Features:


- 1. 20 languages for choose including simplified Chinese, traditional Chinese, English, Spanish, Portuguese, French, etc.
- 2. There are more than six kinds of advanced control operation mode from the traditional add/unloading control to the frequency conversion/variable capacity optimization configuration. The operator can find a optimum operation model according to the request of any use,.
- 3. The internal control system functions can integrate less than 8 EPMaster into a whole system operation control.
- 4. Check time prompt functions
- 5. Regular operation function
- 6. Running data storage capabilities
- 7. Restart function after power-off
- 8. Machine master-slave machine configure, control and run function

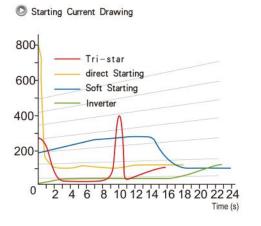
Option:

- 1. The SD memory card, used to store the important data and
- 2. The Ethernet connection card, which can operate the equipment in anywhere of the world, connect to the air compressor through the network; and can check air compressor working status, by the online control interface, or change the system parameters.

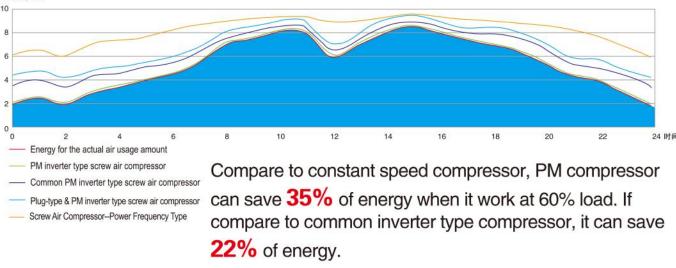
Through analyzing the stop time and loss of production process equipment, we further improve match between supply and demand of compressed air, we providing market-leading compressor management solution, support seamless access to compressed air equipment, meanwhile, we strict management then



GTL Inverter Type Air Compressor with the Function of Effective Energy Conversation (Common Inverter V TYPE & PM Inverter V PLUS)


Constant Pressure Control

Compare to common constant speed machine, inverter type compressor can adjust the rotation speed of main motor automatically through PID mode according to the actual usage amount of compressed air. It not only achieve the constant pressure control, but can save the energy.

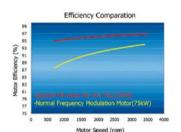

Start without impact

Inverter start mode reduces the impact on the grid and mechanical parts when start the compressor and prolong the service life of machine.

Efficiency of Energy Conservation

consumption

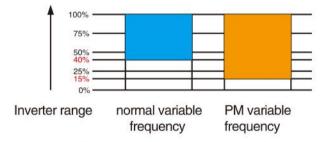
Energy Conversation Difference between Inverter Type and no Inverter Type


Assumed condition: Average working at 70% load, running for 8,000hrs/year, electricity price is ¥ 0.7/ KW/H. Compare to common compressor, inverter type compressor can save cost as below table:

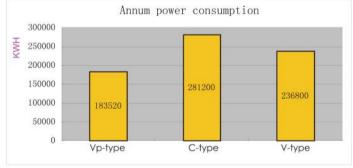
Power(KW)	22	30	37	55	75	90	110
Saving Cost (\$/year)	22700	30925	38215	56683	77374	92837	113356

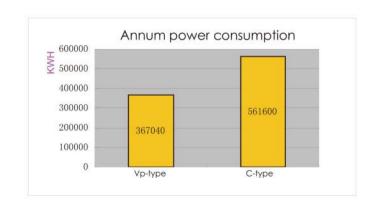
Differences between Compressor's PM variable frequency & normal variable frequency.

Comparison for Energy Efficiency


PM motor keeps high efficiency when it is low speed.

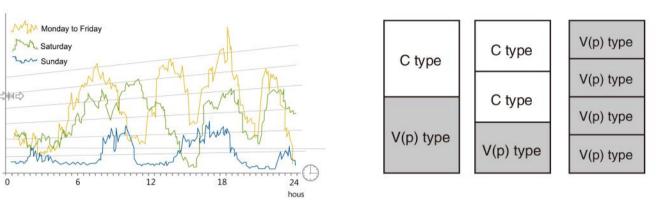
Comparison for the inverter's range

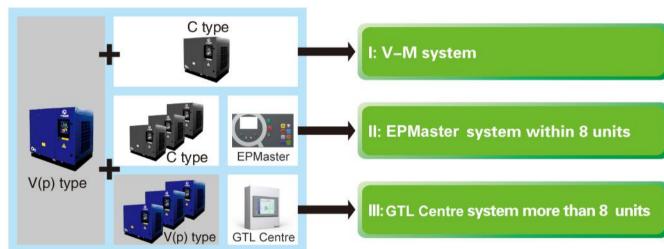

The regulation range of normal inverter is 40%-100%, In the words, when the deviation from the working conditions is in excess of 60%, the normal inverter will be unable to regulate the motor's rotating speed.In contrast, Foxair compressor's PM variable frequency air compressor has a range of 15%-100%. This means that even in the case of 85% devition from working conditions. Foxair compressor's PM variable frequency air compressor can still function normally.


Table of comparison for Energy Efficiency of 37KW screw air compressor

Take 37KW screw air compressor as an example. All values tested during experiment are calculated based on average operating time of 8,000 hours per annum.

		annum power consumption KWH	Energy percentage
The 8000hours per annum energy consumption of	PM inverterVp-type	183520	34.7%
37KW air compressor with 60% load.	ageless speed motorC-type	281200	0.0%
60 % 10du.	normal inverterV-type	236800	15.8%


	Compressor type	annum power consumption KWH
	PM inverterVp-type	367040
energy consumption of 75KW air compressor with	ageless speed motorC-type	561600
	Energy percentage	34.64%



Energy- saving systems

Almost ever compressor system, air demand fluctuates with time. Because of it, the client requests energy-saving. GTL can provide different kind energy-saving systems.

Customer's gas load change diagram

I:V-M system(2-3 unit)

- O The combination V type & ageless speed motor realized energy-saving
- O Automatic Start/Stop function of equipped constant speed compressor (Working at full load)

II EPMaster system within 8 units

O EPMaster control system controls realizes energy saving III.GTL Centre system for aboved 8 units OGTL Centre control system to save energy. O Realize average time of operating lattice machine

100

Air volume ratio(%)

V type

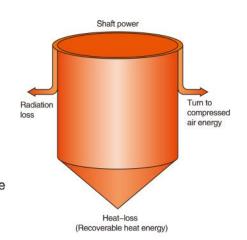
Full time operation, adjustable air flow, meet the air requirement, realized energy saving.

100

Instruction: V type

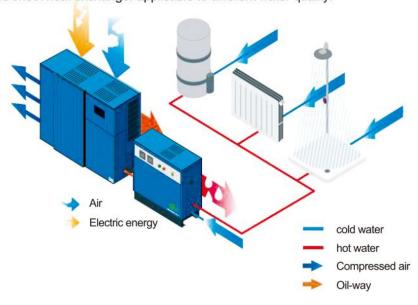
Full time operation, adjustable air flow, meet the air requirement, realized energy saving.

Ageless speed motor C type/ inverter V(P) type Full load operation or stop automatically.


GTL FHR Heat Recovery Device

Post-processing system of compressed air

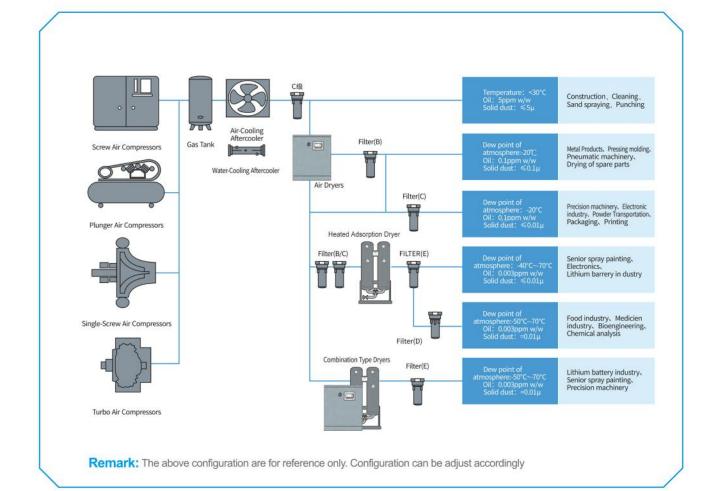
About Compressor energy recovery


In fact, large amounts of electric power which consumed during running, except for a few of them converted into compressed air and applied to the practice, in excess of 90% was converted into heat enery and send into our environment.

In order to meet the user' requirement of energy recovery, GTL developed the energy recovery device which is qualified to be employed in air compressor to provide complete energy recycle scheme, to be possible to bring domestic hot water, Central air–conditioning system hot water, Technology pre–heat water and Boiler hot water preheating for the enterprise

The advantage of energy recovery device:

- 1. Frequency conversion control, constant outlet.
- The user can set at any value between 15°C ~70°C, keep outlet termperature constant according variable frequency regulating, so as not to a frequently change of load to make the hot water temperature varies with the load.
- 2. Constant oil temperature can increase service life
- The CPU which built in the Hear Recovery Device will disposes the parameters of in/out oil termperature, outlet water temperature etc. then accuracy control the cooling water to keep the temperature at the vents constand to prevent supercooling emulsify and overheating, thereby increasing the working life of Compressor;
- 3. Two choice of Panel and sheet heat exchanger applicable to different water quality.


Energy recovery device parameter.

Model	inlet temperature $^{\circ}\!$	outlet temperature $^{\circ}\! C$	L*W*H mm	inlet/outlet dimension
FHR-350	20	70	1500x800x1200	Rp1

One stop shopping One stop service

- We design reasonable allocation and economic compressor station for our customer, Provide cleaner compressed air
- We provide "Pre-sales consulting", " Machine sales", " Site maintenance" and "Spare part supply" four -in -one accurate and timely service.

Screw Air Compress—Belt Transmission

GCB Series---Constant Speed (5.5-90KW)

_ M	lodel		GCB-5	GCB-7	GCB-11	GCB-15	GCB-18	GCB-22	GCB-30	GCB-37	GCB-45	GCB-55	GCB-75	GCB-90
	10001		0.85/0.7	1.23/0.7	1.81/0.7	2.10/0.7	3.20/0.7	3.80/0.7	5.20/0.7	6.80/0.7	7.80/0.7	10.50/0.7	13.50/0.7	16.50/0.7
Air Delive Working Pre		m³/min/ MPa	0.75/0.8	1.15/0.8	1.67/0.8	2.00/0.8	3.00/0.8	3.60/0.8	5.00/0.8	6.28/0.8	7.30/0.8	9.80/0.8	13.00/0.8	
Working Pre	SSUIE	IVIPa		1.03/1.0	1.47/1.0	1.80/1.0	2.70/1.0	3.20/1.0	4.25/1.0	5.60/1.0	6.60/1.0	8.80/1.0	11.80/1.0	13.90/1.0
				0.89/1.3	1.25/1.3	1.50/1.3	2.30/1.3	2.80/1.3	3.75/1.3	4.60/1.3	5.70/1.3	8.00/1.3	10.00/1.3	12.30/1.3
Compression	Stage							sin	gle stage					
Type of coo	oling						(,	Air cooled)	(Wate	er cooled)				
Discharge temp	perature	℃						ient temperat ℃ (water coo	ure+15℃ (air led)	cooled)				
Oil content of disc	charged air	ppm						<	3					
Noise		dB(A)	62±2	62±2	63±2	63±2	65±2	65±2	65±2	65±2	68±2	68±2	72±2	72±2
Driven Mo	de							belt o	Iriven					
Power		V/ph/Hz						380/	3/50					
Motor pow	ver	KW	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Rotation sp	eed	R/min	2905	2905	2935	2935	2935	2940	2945	2945	2950	2965	2965	2965
Starting me	thod		Direct S	Starting					Y- ▲ sta	rting				
Cooling air vo	olume	m³/h	80	80	80	100	145	145	255	255	255	255	268	400
	L	mm	850	850	950	950	1150	1150	1150	1300	1300	1450	1450	2100
Demension	W	mm	640	640	800	800	900	900	900	1000	1000	1450	1450	1585
	Н	mm	840	840	1140	1140	1250	1250	1250	1465	1465	1795	1795	1760
Weight		Kg	300	410	475	560	560	640	900	980	1050	1250	1850	2200
Outlet Pipe D	iameter	inch	G3/4"	G3/4"	G3/4"	G3/4"	G1"	G1"	G1"	G1 1/2"	G1 1/2"	G2"	G2"	DN50

GVB Series-- Inverter

型·	号/Model	GVB-7	GVB-11	GVB-15	GVB-18	GVB-22	GVB-30	GVB-37	GVB-45	GVB- 55(W)	GVB- 75(W)	GVB- 90(W)		
		0.36-1.23/0.7	0.51-1.81/0.7	0.72-2.10/0.7	0.93-3.20/0.7	1.14-3.80/0.7	1.56-5.20/0.7	1.92-6.80/0.7	2.4-7.80/0.7	3.1-10.50/0.7	4.1-13.50/0.7	4.9-16.50/0.7		
	r Delivery/ ting Pressure	0.33-1.15/0.8	0.48-1.67/0.8	0.66-2.00/0.8	0.87-3.00/0.8	1.05-3.60/0.8	1.5-5.00/0.8	1.83-6.28/0.8	2.3-7.30/0.8	2.9-9.80/0.8	4.0-13.0/0.8	4.5-16.10/0.8		
	³/min/Mpa)	0.28-1.03/1.0	0.42-1.47/1.0	0.6-1.80/1.0	0.81-2.70/1.0	0.96-3.20/1.0	1.29-4.25/1.0	1.71-5.60/1.0	2.1-6.60/1.0	2.6-8.80/1.0	3.5-11.80/1.0	4.3-13.90/1.0		
		0.24-0.89/1.3	0.36-1.25/1.3	0.51-1.50/1.3	0.66-2.30/1.3	0.87-2.80/1.3	1.11-3.75/1.3	1.53-4.60/1.3	1.7-5.70/1.3	2.3-8.00/1.3	2.9-10.00/1.3	3.7-12.30/1.3		
	Power (KW)	7.5	11	15	18.5	22	30	37	45	55	75	90		
Flactuic	Horsepower (HP)	10	15	20	25	30	40	50	60	75	100	120		
Electric Motor	Voltage (V/H)	380/50												
	Starting Method	AC power, variable frenquency starting												
Noi	ise DB (A)	66 ± 2	70 ± 2	70 ± 2	72±2	73±2	74±2	74±2	74±2	74 ± 2	75±2	75±2		
Outlet Pipe	Diameter (Inch)	G3/4	G3/4	G3/4	G1 1/4	G1 1/4	G1 1/4	G1 1/2	G1 1/2	G2	G2	G2		
	se of The t Temperature(℃)					-	-5℃~+45℃	:						
Discharge ¹	Temperature (℃)					Air cooled <	Ambient te	mperature +	-8℃					
W	/eight (kg)	435	475	560	560	640	900	980	1050	1250	1850	2100		
	L (mm)	770	950	950	1380	1380	1380	1300	1300	1450	1450	1450		
Dimension	W (mm)	650	800	800	900	900	900	1000	1000	1450	1450	1450		
	H (mm)	850	1140	1140	1150	1150	1150	1465	1465	1795	1795	1795		

Screw Air Compress—Shaft Coupling Transmission

GC Series---Constant Speed (22-550KW)

Mod	lel		GC22 (W)	GC30 (W)	GC37 (W)	GC45 (W)	GC55 (W)	GC75 (W)	GC90 (W)	GC110 (W)	GC132 (W)	GC160 (W)	GC185 (W)	GC200 (W)	GC22 (W)	GC250 (W)	GC280 (W)	GC315 (W)	GC355 (W)	GC400 (W)	GC450 (W)	GC500 (W)	GC55 (W)
			3.80/0.7	5.20/0.7	6.80/0.7	7.80/0.7	10.50/0.7	13.50/0.7	16.5/0.7	21.0/0.7	24.1/0.7	29.0/0.7	32.50/0.7	34.8/0.7	37.0/0.7	45.0/0.7	50.7/0.7	59.0/0.7	67.0/0.7	70.0/0.7	74.0/0.7	82.0/0.7	102.0/0
Air Delive		m³/min/	3.60/0.8	5.00/0.8	6.28/0.8	7.30/0.8	9.80/0.8	13.00/0.8	16.1/0.8	20.0/0.8	23.6/0.8	28.5/0.8	31.0/0.8	32.0/0.8	34.5/0.8	43.5/0.8	50.0/0.8	58.0/0.8	63.0/0.8	68.0/0.8	72.0/0.8	75.0/0.8	94.0/0
Working Pre	ssure	MPa	3.20/1.0	4.25/1.0	5.60/1.0	6.60/1.0	8.80/1.0	11.80/1.0	13.9/1.0	17.0/1.0	20.5/1.0	26.5/1.0	27.5/1.0	28.0/1.0	31.5/1.0	39.0/1.0	42.0/1.0	49.0/1.0	52.0/1.0	57.0/1.0	59.0/1.0	70.0/1.0	76.0/1
			2.80/1.3	3.75/1.3	4.60/1.3	5.70/1.3	8.00/1.3	10.00/1.3	12.3/1.3	14.8/1.3	17.8/1.3	22.5/1.3	24.5/1.3	26.0/1.3	28.5/1.3	35.0/1.3	38.3/1.3	42.0/1.3	46.0/1.3	48.0/1.3	54.0/1.3	64.0/1.3	67.0/1
Compression	Stage												single s	stage									
Type of co	ooling										(Ai	r cooled)	(Wa	ter coole	ed)							
Temperature of V	Water inlet	$^{\circ}$											≤ 32										
Pressure of Wa	ater inlet	MPa											0.2~0.6										
Discharge temp	perature	°C								<		nt tempe (water o		·15℃ (ai	r cooled)							
Dil content of disc	charged air	ppm										(< 3										
Noise		dB(A)	65±2	65±2	65±2	68±2	68±2	72±2	72±2	75±2	75±2	75±2	75±2	75±2	75±2	78±2	82±2	82±2	82±2	83±2	83±2	83±2	83±
Driven Mo	ode												/ direc	t driven									
Power		V/ph/Hz										3	880/3/50)									
Motor pov	wer	KW	22	30	37	45	55	75	90	110	132	160	185	200	220	250	280	315	355	400	450	500	550
Rotation sp	peed	R/min	2940	2945	2945	2950	2965	2965	2965	2975	2975	2975	2975	2975	2980	2980	2980	2980	2985	2985	2985	2985	298
Starting me	ethod											Y- ▲	/ startin	g									
Cooling air v	olume	m³/h	145	255	255	255	268	400	400	600	630	850	850	850	900	900	900	960	1130	1240	1290	1350	138
	L	mm	1380	1595	1595	1595	1820	2100	2100	2540	2540	2690	2690	2690	3330	3330	4250	4250	4250	6200	7000	7000	700
Demension	W	mm	850	1000	1000	1000	1250	1250	1250	1640	1640	1740	1740	1740	1850	1850	1900	1900	1900	4600	4800	5000	500
	Н	mm	1150	1365	1365	1365	1500	1500	1500	1780	1780	1880	1880	1880	1935	1935	2200	2200	2200	3300	3300	3300	330
Weight	t	Kg	640	900	980	1050	1250	1850	2100	2580	2750	3200	3700	4000	4250	4800	4990	5200	6200	7000	7000	7500	800
Outlet Pip Diamete		inch	G1"	G1"	G1 1/2"	G1 1/2"	G2"	G2"	DN50	DN65	DN65	DN80	DN80	DN80	DN80	DN80	DN125	DN125	DN125	DN150	DN150	DN200	DN20
Inlet/Outlet Pipe	Diameter		G3/4"	G3/4"	G3/4"	G3/4"	G3/4"	G3/4"	G1 1/2"	G1 1/2"	G1 1/2"	G2"	G2"	G2"	G2"	G2"	G2"	G2"	G2"	G2"	G2"	G2"	G2"

GV Series-- Inverter

Mo	del	GV22	GV30	GV37	GV45	GV55(W)	GV75(W)	GV90(W)	GV110(W)	GV132(W)	GV160(W)	GV185(W)	GV200(W)	GV220(W)	GV250(W
		1.14-3.80/0.7	1.56-5.20/0.7	1.92-6.80/0.7	2.4-7.80/0.7	3.1-10.5/0.7	4.1-13.50/0.7	4.5-16.50/0.7	4.8-21.0/0.7	5.0-24.10/0.7	5.4-29.0/0.7	6.5-32.5/0.7	7.5-34.8/0.7	8.0-37.0/0.7	8.7-45.0/0.7
	elivery/ Pressure	1.05-3.60/0.8	1.5-5.00/0.8	1.83-6.28/0.8	2.3-7.30/0.8	2.9-9.80/0.8	4.0-13.0/0.8	4.2-16.10/0.8	4.5-20.0/0.8	4.8-23.60/0.8	5.3-28.5/0.8	6.2-31.0/0.8	7.2-32.0/0.8	7.3-34.5/0.8	8.4-43.50/0.
		0.96-3.20/1.0	1.29-4.25/1.0	1.71-5.60/1.0	2.1-6.60/1.0	2.6-8.80/1.0	3.5-11.80/1.0	3.9-13.90/1.0	4.1-17.0/1.0	4.4-20.50/1.0	4.5-26.5/1.0	5.6-27.5/1.0	6.0-28.0/1.0	6.4-31.5/1.0	7.6-39.0/1.0
		0.87-2.80/1.3	1.11-3.75/1.3	1.53-4.60/1.3	1.7-5.70/1.3	2.3-8.00/1.3	2.9-10.0/1.3	3.3-12.30/1.3	3.6-14.8/1.3	3.9-17.80/1.3	4.0-22.5/1.3	5.0-24.5/1.3	5.5-26.0/1.3	5.7-28.5/1.3	6.9-35.0/1.3
	Power (KW)	22	30	37	45	55	75	90	110	132	160	185	200	220	250
Electric	Horsepower (HP)	30	40	50	60	75	100	125	150	180	220	250	280	300	340
Motor	Voltage(V/H)		380/50												
	Starting Method		AC power, variable frenquency starting												
Noise	DB(A)	73±2	74±2	74 ± 2	74±2	74 ± 2	75±2	75±2	75 ± 2	75±2	75±2	78 ± 2	78 ± 2	78 ± 2	78±2
	ne Diameter	G1 1/4	G1 1/4	G1 1/2	G1 1/2	G2	G2	G2	DN65	DN65	DN80	DN80	DN100	DN100	DN100
	Environment ature (°C)							-5℃~	+45℃						
	charge ature (°C)						Air co	ooled < An	nbient ter	nperature	98+€				
Weig	ht (kg)	640	900	980	1050	1250	1850	2100	1280	2750	3200	3700	4000	4250	4800
	L(mm)	1380	1595	1595	1595	1820	2100	2100	2540	2540	2690	2690	2690	3330	3330
Dimension	W (mm)	850	1000	1000	1000	1250	1250	1250	1640	1640	1740	1740	1740	1850	1850
	H (mm)	1150	1365	1365	1365	1500	1500	1500	1780	1780	1880	1880	1880	1935	1935

Energy-efficient and Reliable Air Compressor

PM Inverter Screw Air Compressor & Low–pressure Screw Air Compressor

GCB T/F Field-type Series

Model	Working Pressure	Air Delivery	Motor Power		Weight Kg	
Model	MPa	m³/min	kW	Standard Type	With Air Tank - T type	All-Around Performance - F type
	0.75	0.60				
GCB04	0.85	0.56	4	200	240	400
GCD04	1.05	0.48	4	200	340	400
	1.25	0.40				
	0.75	0.84				
GCB06	0.85	0.78		217	357	417
GCB00	1.05	0.68	5.5	21/	337	41/
	1.25	0.60				
	0.75	1.27				
0.000	0.85	1.18	7.5	275	41 [400
GCB08	1.05	0.99	7.5	275	415	498
	1.25	0.80				
	0.75	1.82				
GCB11	0.85	1.70	11	205	425	FOO
GCBTT	1.05	1.52	11	285	425	508
	1.25	1.35				

GVB T/F Inverter & Field-type Series

	Model	Working Pressure	Air Delivery	Motor Power		Weight Kg	
	Wodel	MPa	m³/min	kW	Standard Type	With Air Tank - T type	All-Around Performance - F type
Ī		0.75	0.64~1.27				
	O) (D00	0.85	0.59~1.18	7.5	210	450	F04
	GVB08	1.05	0.50~0.99	7.5	310	450	504
		1.25	0.40~0.80				
		0.75	0.91~1.82				
	O) /D44	0.85	0.85~1.70	11	220	460	F1.4
	GVB11	1.05	0.76~1.52	11	320	460	514
		1.25	0.68~1.35				

	GCB04~06	GCB08~11	Model (Inverter type) GVB08~11
Standard Type	750×600×955	800×670×1100	1200×670×1100
With Air Tank	1545×600×1565	1545×670×1710	1545×670×1710
All-Around PerformanceAll -Around Performance	1545×600×1565	1545×670×1710	1545×670×1710

The capacity of air tank FOXAIR equipped is 270L.

Model GCB08~11 and GVB08~11, 500L air tank is optional, but the size will be different.

GVP Series --PM Inverter Type

Model	Motor Power (Kw)	Horse Power (Hp)	Volume Flow (m³/min)	Discharged Pressure (bar)	Lubricating Oil Capacity (L)	Outlet Diameter	Dimension (L*W*H)	Net Weight (Kg)
GVP15	15	20	0.35-2.3	8	10	G3/4"	1150x800x1100	350
011 10	10	20	0.31-2.03	10	10	20/1	1100/000/1100	000
GVP22	22	30	0.56-3.71	8	12	G1"	1100x850x1220	550
OVI 22	22	30	0.52-3.42	10	12	01	1100000001220	330
GVP37	37	50	1.03-6.86	8		G1-1/2"	1150x1000x1410	750
OVI 37	31	30	0.91-5.95	10	20	01-1/2	11000100001410	750
GVP45	45	60	1.32-8.79	8	20	G2"	1700x1100x1520	1200
OVI 43	45	00	1.16-7.73	10		G1-1/2"	1150x1000x1410	800
GVP55	55	75	1.63-10.74	8	40		1700x1100x1520	1200
OVI 33	33	73	1.40-9.32	10	40	G2"	1700X1100X1020	1200
GVP75	75	100	2.07-13.8	8	50	02	2100x1200x1620	1500
GVI 73	73	100	1.81-12.0	10	30		2100x1200x1020	1300
GVP90	90	125	2.45-16.33	8	60	DN50	2200x1250x1650	1900
OVI 30	30	125	2.05-13.65	10	00	DIVOO	2200x1230x1030	1300
GVP110	110	150	3.03-20.2	8			2500x1500x1950	
OVI 110	110	130	2.69-17.9	10	75 DN65	20001100011000	2200	
GVP132	130	180	3.62-24.1	8	7.5	D1403	2500x1500x1950	2200
371 132	100	100	3.21-21.3	10			23007130071330	

Note: 1. According to ISO1217 versions 3–1966, the data shown on attachment –C is tested under standard condition. 2.The data is tested according to ISO2151 versions 1–1977.

Low-pressure Screw Air Compressor

50Hz/0.3Mpa

Model	GL-22/3	GL-37/3	GL-55/3	GL-90/3	GL-132/3	GL-160/3	GL-200/3	GL-355/3		
Discharged Pressure (Mpa)	0.3									
Air Delivery(m³/min)	6.55	10.7	17.49	25.44	39.83	45.6	55.73	92.04		
Motor Power(kW)	22	37	55	90	132	160	200	355		
Noise(dB(A))	69	70	72	72	73	75	75	78		
Dimension(mm)	2000 × 1400 × 1700	2800 × 1600 × 1810	2990 × 1710 × 2000	3160 × 1810 × 2080	3460 × 2060 × 2130	4200 × 2300 × 2350	4200 × 2300 × 2350	4400 × 2350 × 2400		

50Hz/0.5Mpa

100									
Model	GL-30/5	GL-45/5	GL-75/5	GL-90/5	GL-110/5	GL-132/5	GL-160/5	GL-250/5	
Discharged Pressure (Mpa)	0.5								
Air Delivery(m³/min)	6.55	10.7	17.49	22.75	25.44	30.00	39.83	55.73	
Motor Power(kW)	30	45	75	90	110	132	160	250	
Noise(dB(A))	69	70	72	72	73	75	75	78	
Dimension(mm)	1680 × 1260 × 1350	2220 × 1410 × 1720	2560 × 1490 × 1820	3110×1690×2200	3110 × 1690 × 2200	3660 × 1760 × 2190	3660 × 1760 × 2190	4160 × 2160 × 2300	